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Lawrence Introduces Big Team Science
Berkeley Laboratory: the first U.S. Department of Energy 

National Laboratory
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What is a Microgrid?
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A microgrid is a 

• group of interconnected 
loads and distributed 
energy resources 

• acts as a single 
controllable entity with 
respect to the grid

• can connect/disconnect 
from the grid

• operates in both grid-
connected or island 
mode 

(Microgrid Exchange Group, 

October 2010)



Our Contribution to Microgrids
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DER-CAM Optimization Tool:

Assessment of cost and environmental 

value streams in 

grid-connected and islanded mode

Technology 

research
Testing Standards

Economic & 

environmental 

technology 

selection

Economic & 

environmental 

dispatch

Analyses, 

Applications, 

and Products

Policies

Controller

Decision 

Support

Embedded 

in other 

Tools 



Global Model Concept for Microgrids

6© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 
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Distributed Energy Resources Customer Adoption Model 
(DER-CAM)

• is a deterministic and stochastic Mixed Integer Linear Program (MILP), 
written in the General Algebraic Modeling System (GAMS®)

• started as a building CHP optimization tool 13 years ago

• supported by the U.S. DOE, OE, DoD, CEC, private industry

• two main objective functions:
• cost minimization

• CO2 minimization

• other objectives are possible, as well as multi-objective

subject to microgrid/building constraints and energy balance

• produces optimal investment and dispatch results for 
biogas/diesel/natural gas CHP, fuel cells, ICE, micro-turbines, gas-
turbines; PV, solar thermal, hot and cold water storage, batteries, heat 
pumps, absorption chiller, EV, passive measures (insulation, window 
changes, etc..)
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• optimizes heating, cooling, electricity, and fuel loads (as natural gas)

• can consider real microgrid conditions as islanding and critical loads

• 17 specific versions exist (http://building-
microgrid.lbl.gov/sites/all/files/projects/DER-CAM-Feature-List.pdf)

• commercialization (web clients) and predictive controller work under way

• 550 DER-CAM web clients to date (English and Chinese version)

What is DER-CAM?
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DER-CAM

Building end-use 
load data

Electricity & gas 
tariff data

DER technology 
data

Site weather 
data

Optimal DER 
capacities

Optimal DER 
operations schedule

Minimize total 
cost

Minimize CO2

emissions

Inputs: Outputs:

Objectives:

● Investment & Planning: determines optimal equipment combination and 
operation based on historic load data, weather, and tariffs

● Operations: determines optimal week-ahead scheduling for installed 
equipment and forecasted loads, weather and tariffs
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Objective function, e.g. min. annual energy 
bill for a test year:

+energy purchase costs
+amortized DER technology capital costs
+annual O&M costs
+ CO2 costs
- energy sales

Energy balance

+energy purchase

+energy generated onsite

= onsite demand + energy sales

Operational constraints
-generators, chillers, etc. must operate within 
performance limits

-heat recovered is limited by generated waste heat
-solar radiation / footprint constraint

Regulatory constraints
-minimum efficiency requirement
-emission limits
-CO2 tax
-CA min. eff. requirement for subsidy and feed-in tariff
-ZNEB

Financial  constraints
-max. allowed payback 
period, e.g. 12 years

Storage and DR constraints
-electricity stored is limited by battery size
-heat storage is limited by reservoir size
-max. efficiency potential for heating and 
electricity

Simplified* 

DER-CAM 

model

*does not show all constraints

Representative MILP DER-CAM

© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 
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Our Partners and DER-CAM Licensees 



Features and Applications

• remote access

• microgrid capabilities and resilience at Fort Hunter Liggett

• optimization of cooling equipment at UNM

• battery scheduling at Santa Rita Jail

---------------------Backup---------------------------------------------

• passive measures

• critical loads

• stepwise approximation of non-linear efficiency curves

• tracking of thermal storage temperature

• wind in DER-CAM

• electrochromic windows

• multi-year optimization (decision support)

• EV modelling

• CA CHP study

• microgrid controller at Fort Hunter Liggett 

12
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Feature

Remote Access to DER-CAM



Access to DER-CAM via SaaS

© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 
14
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Simplified DER-CAM Web-Service for Investment/Planning DER-CAM
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Transferability: Online DER-CAM User Guide

http://building-microgrid.lbl.gov/projects/how-access-der-cam
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WebOpt Statistics
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Application

Microgrid Capabilities and Resiliency at 
Fort Hunter Liggett
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Overview

- Training facility for combat support and combat service support units of the Army Reserve

- Largest installation in the Army Reserve (> 165,000 acres)

- Existing DER: 2MW PV + 1MWh battery

- Future: Large (>1MW) PV and battery system to be installed by TriTechnic

together with Siemens and the U.S. Army

Objective

Enable Microgrid capabilities and install DER-CAM supervisory controller 

DER-CAM Contribution

- Use DER-CAM to gauge optimal capacity of DER

- Consider additional PV and storage

- Backup generation

- Short vs. long duration blackouts

- Optimal DER capacity

source: http://www.liggett.army.mil/
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Objective: Use DER-CAM to perform a quick assessment on optimal DER at FHL to enable microgrid 

capabilities. Focus on resilience against natural disasters.

• Blackout cases: none,  3 h,  24 h,  7 days

• Standard DER-CAM assessment (no blackouts):

Existing DER

Existing DER + additional PV and storage

Existing DER + additional DER (full DER-CAM technology range)

• DER-CAM assessment considering blackouts:

Existing DER

Existing DER + additional PV and storage

Existing DER + Diesel backup generators

Existing DER + additional PV, batteries and diesel backup generators

Existing DER + additional DER (full DER-CAM technology range)

Load prioritizations: 10% Critical loads; 20% Low Priority; 70% Medium priority
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Fort Hunter Liggett – Customer Damage Function (CDF)

Customer Damage Function is used to estimate outage costs as a function of the outage duration.

Value of Electrical Energy Security (VEES)  ~ Outage Duration * $/kW peak * Peak Demand

Source:

Valuing Energy Security: Customer Damage Function Methodology 

and Case Studies at DoD Installations, NREL
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Standard DER-CAM assessment - no blackouts

BAU/Actual

Additional PV + 

Storage

All possible DER in 

DER-CAM

Annual Total Costs, million USD 3.035 2.948 2.701

Annual CO2 emissions, ton 4967 4161 4454

Photovoltaic, kW 2000 3032 2069

Electric Storage, kWh 1000 4141 1251

ICE, kW - - 2000

CHP: ICE + HX, kW - - 500

Absorption Chiller, kW - - 2828

Solar Thermal, kW - - 784

Key Results*)

• Allowing additional PV and storage shows that the optimal investment capacity is higher, which is in 

accordance with the existing expansion plans of FHL

• Allowing other DER shows potential to reduce energy costs by up to 11% and CO2 reductions by 10% 

*) Sales are not part of this analysis 
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Standard DER-CAM assessment - no blackouts

PV generation enables frequent voluntary islanding (no energy purchase during the day)

All DER 

technologies 

allowed
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Fort Hunter Liggett – DER-CAM assessment – with 3h blackout

Key Results*)

• 3h blackout has little to no effect on results

• Existing capacity can be dispatched to meet all electric loads during short duration blackouts 

(some backup generators already exist at FHL)
26*) Sales are not part of this analysis 

(Costs in million USD)
Existing PV and Storage Existing PV, Storage + 

Diesel Backup

Additional PV and 

Storage

Additional PV, Storage 

and Diesel Backup
All DER

TOTAL COSTS 3.050 3.043 2.948 2.948 2.701

Electricity Costs 2.218 2.218 1.703 1.692 1.147

Fuel Costs 0.320 0.320 0.320 0.320 0.475

Annualized Capital Costs 0.491 0.493 0.915 0.926 0.974

O&M Costs 0.001 0.001 0.001 0.001 0.035

CDF Costs 0.015 0.005 - - -

Annual CO2, ton 4966 4967 4177 4161 4455

Installed capacity

Photovoltaic, kW 2000 2000 3079 3032 2068

Electric Storage, kWh 1000 1000 3845 4141 1251

Diesel Backup, kW - 200 - - -

ICE, kW - - - - 2000

ICE HX, kW - - - - 500

Absorption Chiller, kW - - - - 2828

Solar Thermal, kW - - - - 783



(Costs in million USD)
Existing PV and 

Storage

Existing PV, Storage + 

Diesel Backup

Additional PV and 

Storage

Additional PV, Storage 

and Diesel Backup All DER

TOTAL COSTS 5.363 3.068 3.655 2.976 2.702

Electricity Costs 2.216 2.216 0.785 1.661 1.145

Fuel Costs 0.320 0.326 0.320 0.324 0.477

Annualized Capital Costs 0.491 0.510 2.475 0.971 0.976

O&M Costs 0.001 0.001 0.001 0.001 0.036

CDF Costs 2.330 0.009 0.059 0.010 0.000

Annual CO2, ton 4955 4973 2132 4119 4444

Installed Capacity

Photovoltaic, kW 2000 2000 4936 3106 2077

Electric Storage, kWh 1000 1000 20709 4374 1250

Diesel Backup, kW - 1400 - 1000 -

ICE, kW - - - - 2000

ICE HX, kW - - - - 500

Absorption Chiller, kW - - - - 2807

Solar Thermal, kW - - - - 801

Fort Hunter Liggett – DER-CAM assessment - 24h blackout

Key Results*)

• Results show that additional PV and storage, in addition to backup generation, will allow FHL to survive 24h 

outages without any major service disruption at low costs – diesel consumption roughly 1250 gallons for 24h

• When considering all DER options, the optimal investment solution allows enough flexibility to maintain 

operation during 24h outages and lowest costs

*) Sales are not part of this analysis 
27
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24h blackouts, only PV and storage

With the current PV and storage capacity alone, FHL would have severe curtailments in the 

event of a 24h outage, and would not be able to supply all loads
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24h blackouts with PV, storage, and diesel backup generators

Planned expansion of PV and Storage, together with diesel backup generators will allow 

increased resilience at FHL

Only PV, 

Batteries, 

and Backup 

Generators 

allowed

some load 

curtailment
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DER-CAM assessment – 7 day  blackout

• Extremely high costs in prolonged outages with current resources (with 

existing equipment 24 millionUSD, all DER allowed only 3 millionUSD)

• Additional backup capacity increases significantly (up to 8 MW)

• Considering the capacity of DER to be implemented at FHL, the ability to 

maintain operation during prolonged blackout periods relies only on the size of 

fuel storage (fuel storage sizing) – consumption during blackouts approx. 3300 

gallon LNG (12 500 liter)
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Application

Cooling at the University of New Mexico



objectives:

• generate optimized scheduling of cooling equipment with 
Operations DER-CAM 
– solar thermal collection

– hot water storage

– chilled water storage

– absorption chiller

• deliver results daily via automated
interface to UNM building control 
system (delta controller)

32



UNM Test Equipment/Configuration

Cooling 

Load

ChW

Tank

District 

ChW

Abs. 

Chiller
HW Tank

District 

HW

Solar 

thermal 

HW

Heating 

Load

ME Bldg

Heat flow
Cold flow

equipment capacities:
− solar thermal: 170 kW peak rating
− absorption chiller: 70 kW
− chilled water storage: 3800 kWh 
− hot water storage: 300 kWh (9000 gallons)
(all values thermal)

33



UNM: Cooling Results
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• cold storage recharged 
during cheap off-peak 
hours

• abs. chiller runs off-peak to 
avoid chiller pumping costs

• abs. chiller constrained to 2 
cycles per day

Hot/Sunny Week Beginning Monday

automated delivery of results 

�

saves up to 29% in energy 

costs
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UNM SaaS Structure

35
© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 
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Application

Battery Scheduling at the Santa Rita Jail



DR and Battery at Santa Rita Jail (SRJ)

objectives:

• deliver optimized week-ahead scheduling of onsite electric 
storage with Operations DER-CAM 

• determine potential reduction in utility feeder peak demand 
through strategic battery dispatch

� 3 MW peak load facility
� CERTS microgrid 

functionality

DER On-site:
� photovoltaic: 1.2 MW peak
� fuel cell: 1 MW molten carbonate
� electric storage: 2 MW 2MWh Li-

ion
37



Problems with Generation
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Charge Type:

−fuel cell experiences frequent outages

−even short outages can have significant 

economic impacts, by setting monthly 

power demand charges

−How can this be avoided?

Fuel Cell Performance History
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DR with 

Electric Storage



SRJ: Optimal 
Schedules*

*Jail-Only Results
(note scale)

DER-CAM minimizes 
on-peak purchases 
due to high demand 
charge

Solution 1:

utility bill 
minimization

Solution 2:
feeder peak
minimization 

+$3.8k demand charge
3.5% reduction 

39
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• optimal battery schedules can be obtained assuming availability scenarios 
separately (deterministic approach) or simultaneously (stochastic approach)

• the stochastic approach results in a more conservative schedule as well as lower 
energy costs when unexpected events occur

Avg. H1:H3 – Average 

of optimal battery 

schedules H1 to H3, 

obtained from fuel cell 

availability scenarios 1 

to 3.

HS – Optimal battery 

schedule obtained by 

the stochastic model, 

where all scenarios are 

considered 

simultaneously. 

0.00

0.20

0.40

0.60

0.80

1.00

Battery state of charge

Avg H1:H3 HS

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Observed fuel cell scenario 1 2 3

Battery schedule Avg. H1:H3 HS Avg. H1:H3 HS Avg. H1:H3 HS

Total energy costs $    70 296 $    69 126 $    59 017 $    57 560 $    64 213 $    60 431 

TOU charges $    26 807 $    26 837 $    21 245 $    21 351 $    23 232 $    21 821 

Demand charges $    42 705 $    41 567 $    29 596 $    28 160 $    35 661 $    30 968 

SRJ: 
Optimal 
Schedules 
with 
Uncertainty



End

Thank you!

Questions and comments are very welcome.

41
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Feature

Passive Measures
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Trade off between Costs and CO2

Investment DER-CAM:
multi-objective frontier (minimize the combination of 

costs and CO2 emissions for building)

Cost total building energy costs including amortized capital costs

CO2Em total building CO2 emissions

ω weight factor (0..1)

RefCO2Em parameter to make equation unit less

RefCost parameter to make equation unit less. 
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min � = � MFixm
m

+ � �u,m,d,h ∙ Cu,m,d,h
m,d,h

+ � max �u,p ∙ Du,p
u,p

+ � ���g ∙ IFixg
�

∙ ANNg

+ ����� c,s# ∙ IFix c,s# + $%� c,s# ∙ IVar c,s#(
 c,s#

∙ ANN $,)#

+ � �*�i,u,m,d,h
ηi

∙ GENCi,u,m,d,h
i,u,m,d,h

+ � .�u,m,d,h ∙ DRCu,m,d,h
u,m,d,h

− � )*11j,u,m,d,h ∙ Sm,d,h
j,u,m,d,h

+ ��4�5b,k ∙ Ab ∙ �MATb,k + INSTb,k( ∙ ANNb,k(
b,k

 

Passive Measures have Costs but Change the 
Loads Directly

LOADu,m,d,h′ = LOADu,m,d,h − ��4�5b,k ∙ �Ub,k′ − Ub(  ∙ Ab ∙ Fxb(
b,k

∙ ΔTu,m,d,h ∶ u ∈ Acl, shC 

© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 
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Passive Measures and DER at Campus Building

can enable zero carbon microgrid
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Feature

Critical Loads



Stochastic Formulation of DER-CAM

47

Two-stage stochastic problem
• first stage → investment decisions; yes or no? How much capacity?

• second stage → operation decisions; charge or discharge? unit 

commitment?

Fixm fixed costs in month m
Invi investment decision on technology I, continuous

versus discrete technologies
InvCosti annualized investment cost of technology i
p
ω

probability of scenario ω
OpCostω,m,t,h microgrid operation costs in scenario, month m, 

day type t, hour h

Objective function (generic structure), deterministic equivalent problem
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• whenever load prioritization is necessary, we may define 
critical loads / load priorities in DER-CAM

• critical load / load prioritization may occur both during outages 
and demand response interventions

• load priorities may be 
set to three different levels
for both outages and
demand response events:
low, mid, high

Critical Loads

© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 
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Outages

• utility grid outage events can trigger shortages, which can be set to different 
load priorities, although loads can also be met by local generation

• this approach has been implemented in the stochastic version of DER-

CAM, allowing multiple grid outage scenarios to be considered 
simultaneously, which has a direct influence on DER Investment decisions

Outage event

(scenario)

Disabled Utility 

Purchase 

(scenario)

Shortage event 

(scenario, 

priority)

Local generation 

(scenario)

INVESTMENT 

DECISION

Economic Evaluation
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Small Office –
with Allowance of Disruption for low and mid
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Small Office –
NO Allowance of Disruption for low and mid
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Feature

Stepwise Approximation of Non-Linear 
Efficiency Curves
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Non-Linear Efficiency Curves –
New Modelling of CHP/DG

constant efficiencies problematic since

Electrical efficiencies for natural gas powered CHPs

based on installed capacities Pinst

Source: ASUE, 2011

Typical efficiencies for natural gas powered CHPs

based on load levels U

Source: EEA, 2008

a) installed capacity 

affects maximal efficiency

b) part load performance 

affects actual efficiency
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DE = FE GHIJE, KE = � � F GH ,L KH,ML ∗ OE,H,M#
P

MQR

I

HQR

OE,H,M ≥ 0

� � OE,H,M
P

MQR

I

HQR
= 1

consecutive variables

not more than two adjacent ≠ 0
binary variables avoided, x is a weight factor

Stepwise Linear Optimization, SOS

© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 
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Efficiencies Fuel consumptions Energy outputs

Tabled in 

DER-CAM calculated
calculated

Determination of xt,i,j for each t

GV

KW
GV

KW
GV

KW

GV

KW
GV

KW
GV

KW

Implementation in DER-CAM
© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 
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Hospital building in San Francisco 

changes of SOS version compared to fixed efficiency, CO2 minimization

changes compared to the fixed efficiency version

total costs [%] 1

total CO2 Emissions [%] -3

CHP installation [%] 0

PV installation [%] -100

solar thermal installation [%] 205

heat storage installation [%] #inf!

elec. generated [%] 1

Elec. purchase [%] 6

NG not used in CHP [%] -59

NG used in CHP[%] 6

better 

modelling of 

CHP efficiency 

curves impacts 

mostly PV, 

solar thermal, 

and heat 

storage in this 

example



57

Changes in Operational Levels

due to heat storage and solar 

thermal in summer

limited heat storage and 

solar thermal in winter
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Feature

Temperature Tracking in Heat Storage



5959

Temperature Tracking in Heat Storage

In previous DER-CAM versions: 

• thermal energy storage (TES) could only be charged by high 

temperature (HT) heat sources, i.e. low temperature (LT) heat 

sources, such as heat pumps, could not be used with the TES 

• self-discharging losses were only calculated based on the energy 

stored in the storage, no difference between the ambient 

temperature and the water temperature in the tank was considered
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Temperature Tracking in Heat Storage

current approach:

• the use of low temperature heat sources is enabled, e.g. heat 

pumps

• TES is modeled as a storage with two sections (high and low 

temperature)

• DER-CAM decides both on the total storage size and on the high 

and low temperature sections

• self-discharging losses are estimated based on the energy stored in 

the TES and on the difference between the ambient temperature 

and the water temperature in the TES



Schematic of New Model
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61© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 



losses for old TES

losses for a fully mixed TES estimated losses for the new TES

Loss Comparison
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CA Example Results for CO2 Minimization

change in optimal technology investment compared to previous DER-CAM

objective function changes marginally, but adopted technologies can change a lot  

Change in technology 

investment excl. HP [%] 

San Francisco San Diego 

LCOLL LHLTH LHOT LCOLL LHLTH LHOT 

DG without HX - - - -100 inf - 

CHP (DG with HX) -7 0 0 24 -15 0 

Electric Storage -65 -14 -3 -24 -18 -3 

TES (LT section) -100 -100 -14 158 -5 -28 

TES (HT section) -100 -100 -100 -100 -100 -100 

TES (LT + HT section) -100 -100 -14 158 -5 -28 

Abs. Chiller 15 -100 56 21 -20 -5 

PV -7 Inf -2 0 0 -2 

Solar Thermal -100 -75 21 - - 14 

Annual CO2 Emissions 7 4 -1 -1 3 0 

Annual Energy Costs -6 0 -1 6 -8 3 
Note: ‘-‘ means no investment in any model, ‘inf’ means no investment in old model, ‘-100’ means no investment in new model. 



64

Feature

Wind Power



• DER-CAM now supports wind power in the Deterministic 
Investment & Planning version

• user is required to input wind speeds, power curve and 
cost coefficients

• the current time structure used in this DER-CAM version 
(36 typical days of hourly loads) requires pre-processing 
of wind data  (vs. 365 daily loads)

• the spreadsheet pre-processing provides potential wind 
generation values, which are fed into DER-CAM

• DER-CAM finds the optimal number of wind turbines to be 
installed at study site.

65
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• DER-CAM considers 3 (or 7) representative days per month, each 
described by 24h time steps

• non-linear power curves and cut-in / cut-out speeds lead to high impact 
of time discretization

Time Consistency
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Time Consistency

Wind Power

Time m/s kW

00:10 2.14 0.00

00:20 2.53 0.00

00:30 3.06 0.13

00:40 3.59 1.18

00:50 3.99 1.97

01:00 4.17 3.04

AVG

3.25 1.05

example

In this case, with data 
sampled from on-site 
measurements, the average 
wind speed is below the 3.5 
m/s cut-in speed, and yet the 
energy output is not zero
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Time Consistency

• data format required by DER-CAM requires wind output to be 
processed after wind-power calculations

month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 5.84 6.30 7.23 8.20 10.22 7.88 5.29 5.72 7.00 6.65 7.43 9.03 9.24 8.28 7.87 6.65 4.62 4.52 3.76 4.47 4.72 4.92 5.23 7.65

2 9.86 10.24 10.93 7.43 6.37 5.17 6.02 6.70 4.96 5.46 7.01 7.97 7.91 9.00 8.23 7.82 7.32 6.88 6.51 5.81 5.23 6.52 8.35 10.17

3 19.72 20.33 18.97 17.22 14.31 12.09 12.16 13.64 14.99 14.28 13.77 14.46 13.77 13.07 11.83 11.59 10.25 9.51 10.14 10.27 13.27 14.50 17.48 20.01

4 14.27 12.49 9.87 10.21 8.93 9.55 8.87 7.05 7.29 7.62 7.11 6.55 5.99 5.38 7.82 6.82 4.80 5.88 7.32 8.38 9.41 13.05 15.14 18.01

5 12.30 12.73 10.80 8.21 7.14 7.38 7.12 5.96 4.69 3.50 3.02 2.50 2.07 2.50 3.05 2.81 2.92 4.27 4.67 5.21 5.70 6.91 9.00 12.45

6 11.73 10.83 9.51 9.09 9.09 9.14 8.97 7.51 7.72 7.33 5.04 4.21 3.43 2.97 1.92 1.29 1.30 1.48 2.23 2.33 2.86 4.13 6.61 13.10

7 13.19 11.47 11.73 13.47 13.05 11.77 11.20 9.49 7.74 6.20 4.72 2.89 2.19 1.62 1.33 0.63 1.23 2.15 3.01 3.82 4.55 5.51 7.62 11.68

8 8.75 7.54 6.60 6.69 5.63 4.32 4.35 3.69 3.03 2.10 1.98 1.66 1.54 1.41 1.06 0.78 0.67 0.69 0.92 1.34 1.82 2.31 4.02 6.77

9 6.97 6.30 6.58 5.03 4.17 4.09 4.03 3.02 2.18 1.33 0.93 0.48 1.02 1.31 1.63 1.85 1.96 3.36 4.13 4.73 4.68 4.15 4.95 7.76

10 9.04 6.87 7.33 5.97 5.23 5.21 3.76 2.89 2.00 2.01 1.95 2.05 2.29 1.97 1.85 1.95 1.83 1.23 1.73 2.30 2.64 2.35 3.32 6.01

11 7.35 8.04 6.73 7.07 5.88 4.30 4.30 2.99 3.20 2.63 1.97 1.98 1.03 0.94 0.82 0.99 1.35 2.32 2.82 3.45 3.47 3.47 4.38 7.21

12 7.26 6.54 5.73 7.69 6.82 7.26 5.96 6.53 6.29 6.16 5.21 5.33 5.46 4.69 5.11 6.51 6.91 7.96 7.65 7.95 8.96 9.37 8.94 9.13

month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1.6 1.6 2.2 2.2 3.0 1.5 1.0 0.6 0.8 1.0 1.3 1.5 1.8 1.7 1.4 0.9 0.0 0.0 0.0 0.0 0.2 0.3 1.1 1.8

2 9.4 7.2 5.3 1.6 0.8 0.0 0.1 0.3 0.0 0.0 0.3 0.6 0.6 1.2 1.1 1.0 0.8 0.8 1.0 1.4 1.8 2.8 3.9 7.7

3 15.2 17.4 16.2 12.8 9.8 6.7 6.7 8.4 9.7 9.8 8.1 7.8 7.2 7.4 6.2 5.0 1.9 1.8 3.9 5.4 8.0 9.6 12.6 15.1

4 11.8 9.4 7.1 6.2 4.9 5.4 3.6 1.8 1.8 1.5 0.9 0.5 0.6 0.5 1.2 0.7 0.4 1.2 1.9 3.2 4.7 8.5 11.0 15.5

5 10.1 10.8 7.8 5.3 3.5 2.7 2.2 1.7 1.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.6 0.9 1.5 2.2 4.8 8.9

6 8.8 7.8 7.2 6.5 5.3 5.2 5.5 3.8 2.6 1.9 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 1.6 4.6 10.2

7 11.6 9.4 8.9 11.0 10.6 8.9 7.8 6.4 4.9 3.0 1.8 0.8 0.5 0.0 0.0 0.0 0.0 0.2 0.8 1.2 1.6 2.3 4.9 9.9

8 6.1 5.5 4.5 4.1 1.9 1.3 1.1 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.5 3.0

9 3.5 2.2 1.6 0.5 0.1 0.2 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.4 0.5 1.3 3.9

10 5.6 2.9 1.9 1.2 0.8 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.7 2.2

11 1.8 2.0 1.1 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.4

12 4.2 2.2 1.0 0.6 0.2 0.4 0.4 0.9 0.4 0.1 0.0 0.0 0.0 0.0 0.1 0.4 0.7 0.9 0.4 0.7 1.5 2.7 3.6 4.6

energy output: raw wind data → processing of wind / power calculations

energy output: processing of raw wind data → wind / power calculations
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Test Results for Large College Building 
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wind power first results

• wind turbines are not cost-effective without 
subsidies or incentives

• wind power can provide a significant part of the 
total load

• unpredictability of wind speed requires coupling 
with energy storage

• the current representation of time in DER-CAM 
introduces significant limitations in wind power 
modeling

• possible need to increase time resolution and/or 
add higher number of representative days
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Feature

Improved Modeling of Thermodynamics in 
Buildings: Electrochromic Windows 



• Electrochromic (EC) windows are a type of shading 
system. EC provide different levels of shading with a small 

electricity consumption required for the switching process 
(0.5Wh/m2, 5V), which can be used to control building cooling loads.

• trade-off: increased levels of shading reduce cooling 
loads, but increase lighting loads.

→ optimization problem

72
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• DER-CAM will support  variable shading (EC 
windows, shutters) in the Operations version

• user is required to input load changes (electrical and 
cooling) for different shading levels

• requires pre-processing of environmental conditions 
for shading levels (lookup table) and building loads 
(E+)

• DER-CAM finds optimal shading levels for each time 
step (down to 5 min)

Shading
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New components

Shading
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applications

• evaluate technical potential

• run optimization for possible buildings in China 
(China Energy Group at LBNL)

status

• most of programming completed
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Feature

Multi-Year Optimization
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challenges:

• microgrids are often modular

• investment decisions over the years are influenced by 
trends both in energy demand and technology costs

• technology degradation over time must be considered

• find optimal investment and re-investment years over 
the multi-year period
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improvements in multi-year optimization:

• load variability

• fuel cost changes

• technology degradation

• changing tariffs

• changing taxes

• changing weather data
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application: office building in San Francisco

Fuel Costs

[Annual Energy Outlook, EiA 2013]

$ / kWp

fixed costs (eng. + permits) 
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investment plan
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Feature

EV Modelling



EVs in DER-CAM

82



83

optimization determines the energy flow direction, microgrid could 
perform load management

EVs in DER-CAM



EV Fleet Aggregator
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Key assumptions:
• microgrid costs: charging infrastructure ($1000/car), energy use and 

battery degradation

• EV owner purchases car anyway and has no disadvantage due to 
microgrid

• all benefits and inefficiencies are allocated to the microgrid

• all cars charge at least enough electricity at home for a daily roundtrip  

(not included in microgrid costs)

• driving electricity can be used by the microgrid but must be returned

• when cars change state, the SOC is equal to the average SOC of the fleet 

in the original state, plus electricity needed for driving



EV Fleet Aggregator
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Parameters

a) fleet distribution

b) fleet transitions

Key decision variables

c) EV fleet size

d) electric input / output 

at home and uGrid

Other variables

e) electricity stored at home and uGrid

f) driving consumption

g) electricity stored in traffic

© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 



Case Study - Source of Uncertainty
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1 Source: B. Mckenzie and M. Rapino, “Commuting in the United States : 2009, American Community Survey Reports, ACS-15.,” Washington, DC, 2011

EV fleet distribution obtained from a 2009 US survey on departure times for daily 

commute round trips 1
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Case Study - Source of Uncertainty
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Case Study
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• Medium office building in San Francisco
• 380 kW electric peak

Possible technologies
internal combustion engines, micro-turbines, gas turbines, fuel cells, 
heat exchangers, PV, solar thermal, absorption chillers, stationary 
electric storage, and electric vehicles

Cost optimization runs
• no DER investments
• invest without EVs
• invest with EVs
• deterministic and stochastic 
• max. payback period for DER investments: 5 and 12 years

© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 



Case Study Key Results
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• charge batteries at home 

and use the electricity at 

the microgrid throughout 

the day 

(home charging rate: 

6c/kWh, microgrid: >> 

10c/kWh)

• charging occurs in early 

morning hours at home

© Berkeley Laboratory, no duplication or use without the knowledge of Berkeley Lab, USA, Michael Stadler 



Case Study – Key Results
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Case 

Refs.

Optimality 

gap (%)

Total Energy 

Costs ($)

Total CO2

(kg CO2)

Optimal Capacity (kW/kWh)

PV ST
ICE

/HX
ES EV (cars)

BAU 0 281,286 1,017,475 - - - - -

EVSTP5 0 269,293 1,053,325 - 50.9 - - 3,578(2)

NOEVP12 0.091 269,530 737,856 189.9 - 60 - -

EVS1P12 0.029 264,135 769,530 191.1 - 60 - 2,804

EVS2P12 0.057 265,257 758,197 192.3 - 60 - 2,005

EVS3P12 0.062 266,229 754,716 188.4 - 60 - 1,463

EVSTP12 1.087(1) 266,270 823,138 201,1 83,7 - - 2,423

1) Max optimality gap set to 1%

2) Constrained by maximum parking area



EV Findings
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• the introduction of EVs leads to financial savings with both 5 and 12 year 
payback periods (CO2 results depend on marginal grid emissions)

• microgrid total energy costs tend to be similar once EVs are allowed in the 
runs

• solving the stochastic problem leads to the installation of solar thermal 
panels and higher PV, replacing ICEs (note optimality gap)

• best strategy: EVs are charged at home and used later at the microgrid in 
order to reduce microgrid energy costs

• impact of uncertainty in driving pattern is limited (Why?)

• next step: consider other sources of uncertainty
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Application

CA CHP study
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37% of Commercial Electric Demand 



Installed CHP Capacity in 2020
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Installed CHP Capacity in 2030
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Application

Microgrid Controller at Fort Hunter Liggett (FHL)



Overview FHL
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• large 2 MW PV and battery system 1 MWh

• in the future 8 MW of PV and full microgrid

• no supervisory controller available



Current DER-CAM Model at FHL
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DER-CAM

planning 

module

utility 

export limit 

module

SCADA data 
exchange 

module

SCADAinternet

battery, purchase, and 
load drop schedules

weather
forecast

actual load, PV 
generation and 

SOC

deliver set-points 
and also dynamic 

lookup table

system statusinstructions

Dispatch Planner at FHL 

15min 
cycle
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Forecasting Load and PV Generation

For real-time optimization, load and PV generation need to be 

forecasted for FHL. Both factors are driven by different influences.

• load is driven by base occupancy and shows relatively stable 

daily patterns. Influence of outside temperature appears to be 

relatively minor.

• PV is driven by solar radiation, which depends on the position of 

the sun and various seasonal patterns. Patterns can be very 

volatile due to clouds.

• load data is available in 15-minutes intervals as net load, 

weather data is available in hourly intervals, PV data varies 

between 15 minutes and hourly
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Forecasting Load

• load shows consistent patterns for 

each day of the week (holidays are 

similar to Sundays)

• to forecast next Tuesday, the past 

three Tuesdays are considered and 

a Fast Fourier Transformation 

(FFT) is used to extract the most 

important frequencies

• the resulting curve contains the 

main pattern without noise



average error over a day is around 10%

� change in base occupancy is only slowly incorporated by FFT

☺ forecasted values are multiplied with a parameter d that starts out at 1 and 

decreases / increases whenever deviations between forecasted and actual 

values exceed a certain threshold
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Forecasting Load
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Forecasting PV
Weather forecast data is available hourly and difficult to interpolate (qualitative 

data like “cloudy”). 

• solar radiation depends on position of sun and seasonal factors

• in the short term, these seasonal factors are fixed and sun altitude becomes 

dominant influence of clear-sky PV generation
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Forecasting PV

• clear-sky PV generation is forecasted using a simple linear 

model that relates sun altitude to power generated of the past 

30 clear-sky hours

• for fog, haze, and clouds clear-sky PV generation is modified by 

a specific factor to get expected generation

• deviation (i.e. (forecast-real)/real) is less than 5% in 80% of the 

cases and less than 10% in 90% of the cases

• forecast errors mainly due to inaccuracies in qualitative data 

(“03 PM overcast” does not necessarily imply that it is overcast 

for the entire hour)
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Forecasting PV
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SCADA interface

early development stages achieved successful feeding of Operations DER-CAM 

dispatches in the FHL SCADA system
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SCADA Interface



DER-CAM Output: Example
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