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Overview

• What is understood as DG ?

• Interactions with the electrical power system

• How far can we go ?

• Specific problems of large-scale off-shore wind 
power
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Traditional low voltage grid

• Limited number of loads
• Energy supplied top-down from central 

power station  
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Today’s grid

• Increased loading
• Increased distortion: due to nonlinear 

(power electronic) and sensitive loads 
power quality problems arise)
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Sustain load growth ?

• The load tends to grow with 2% yearly on 
average
– New generation to be build
– Electrical power system needs expansion & upgrade

• Paradox: society consumes ever more power, 
but resists new power plants & power lines

• Additional: the desire to be “green” (e.g. Kyoto)
• Solution: bring (‘cleaner’) generation closer to 

the loads ?
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Grid of tomorrow ?

• Distributed generation appears in grid, either 
running on traditional fuels or converting 
renewable energy

• Power quality and reliability is a big issue
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DG: definition(s)
• International Energy Agency:

– ‘Distributed Generation’ : local electricity production in the distribution 
grid (in British English: ‘Embedded Generation’)

– ‘Dispersed Generation’ : often a synonym, but sometimes ‘stand-
alone’ and non-connected units are included

– ‘Distributed Power’ : DG plus additional installations for energy storage

– ‘Distributed Energy Sources’ : previous + controllable loads which can 
be a source of ‘negative power’

– ‘Decentralized Power’ : notion used to stress that these technologies 
are not always centrally controlled
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DG technologies
• Reciprocating engines
• Gas turbines
• Micro-turbines
• Fuel cells
• Photovoltaic panels
• Wind turbines

• Additional: CHP configuration
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Energy storage
• Complementary technology: 

smooth out mismatch 
between production and 
consumption at different time 
scales (electricity by itself 
canNOT be stored!)
– Batteries
– Flywheels
– Supercapacitors
– Reversible fuel cells
– Superconducting magnetic 

energy storage
– Compressed air storage
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Why use DG ?

• Interact with energy market
– Standby capacity or peak use capacity (peak shaving)
– Reliability and Power Quality enhancement
– Alternative to expansion or use of the local network
– Grid support

• Environmental concerns
– Combined generation of heat and electricity
– Efficient use of ‘cheap’ fuel opportunities
– Exploit renewables
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Policy issues

• High financial cost
• Less choice between more costly primary 

fuels: bet everything on gas?
• Economic Efficiency
• Environmental protection
• Energy Security
• Power Quality
• Connection issues

03/18/'04 Distributed Generation - J.Driesen 12

‘Energy islands’ or microgrids
• Do we need to stay connected to the grid?

– Balancing problem
– Provide own ancillary services: stabilize voltage and 

frequency
• Intentional islanding

– for reliability reasons: back off in case of problems
– Economic reasons: price peaks

• Theoretically possible, difficult in practice
– Need storage, load control
– ‘Inertia is out of system’: very dynamic (read instable)
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Points of attention when 
introducing DG

• Power quality & reliability
• Control, or the lack of
• Safety
• Environmental issues
• Availability of transport infrastructure for 

primary energy sources, i.e. natural gas
• Economic aspects
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Power quality & reliability
• Bidirectional power flows cannot be excluded
• Voltage profile becomes affected
• Stabilizing inertia decreases (small systems) or is zero 

(power electronics)
• Increasing use of power electronics (non-linear systems) 

cause more harmonic distortion
• Unbalance due to small single-phase PV systems
• But: power electronics may (theoretically) be configured 

to enhance PQ, e.g. by producing Q, filtering, …
• Some types of DG units can also be used as backup 

power supply
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Grid study tools (1)
• Static load flow

– Special network equations
• Flow variables are P and Q (active/reactive power)
• Node variables are V and δ (voltage amplitude and phase angle)

– Losses along lines included
– Loads and generators are modelled as

• ‘PV-nodes’: power input + control system for Q to keep V constant 
(large centralised power plants)

• ‘PQ-nodes’: certain power input or consumption (used for loads and 
DG units)

• ‘slack or infinite bus’: special node that balances power (connection 
to HV grid)
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Grid study tools (2)

• Dynamic load flow
– Transient network equations
– Complicated models

• include dynamics
• Include control system (local & 

global if dispatchable)
• …

– Some knowledge about in-
house electrical system is 
required, e.g. the presence of 
induction machines

Active power 
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Energy Balance study

• DG units
– produce certain amount of P, depending on various 

parameters
– produce or consume a certain amount of Q, which 

can be controlled (e.g. inverter or synchronous 
machine coupled) or not (e.g. induction machine 
generator)

• Loads
– Difficult to model due to irregular customer behavior
– P and Q as a function of voltage at connection
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Simplified load model

• Approximate formulae

• α = β = 0 constant power load
• α = β = 1 constant current load
• α = β = 2 constant impedance load
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Voltage profile along line

• ‘Normal’ situation: loads 
cause drop of voltage 
towards end of line

• DG unit
– inject P; rise follows
– inject or consume Q: 

compensate or worsen…
• Grid characteristics (R/X) 

have large impact
δ

Uj

Ui

II
IIRij

jIIXij

Rij+jXij

Ui Uj
Peg + jQeg

EG

PLj + jQLj

II

SI

Sending end Receiving end

Substation

( ) ( ) 2U /
U dg Lj ij dg Lj ijP P R Q Q X U∆ ⎡ ⎤= − + −⎣ ⎦

03/18/'04 Distributed Generation - J.Driesen 20

Voltage Stability studies
• Voltage stability problems need special attention in many 

systems: “weak grids”, long lines, heavy loads, …
• Voltage instabilities may happen in case of reactive 

power shortage, large disturbance, load increasing, …
• Methods

– Small-disturbance voltage stability: steady-state study
– Large-disturbance voltage stability: dynamic study 

• Tools
– Static analysis is used to determine stability margin (e.g. 

maximum loading), identify factors influencing stability
– Dynamic analysis is used for detail study, e.g. reaction to a fault
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Test case study

• Case: semi-industrial distribution grid
– Some global load data (substation 

measurement) known
• assume spread of load at level of 80% of rated 

power, with PF of 0,9
– Assume large DG unit(s) (CHP or motor) 

inserted
• with induction machine generator: consume 

reactive power
• with synchronous machine generator: reactive 

power controllable
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Industrial area: MV
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Industrial area: LV
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‘open-ring topology’
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Example: voltage profile
• DG in node 406, near unity power factor
• Voltage profile for one branch
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Example: power factor influence

• DG in node 406, different power factors
• Voltage profile in node 406
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Example: steady-state voltage 
stability

• Voltage in certain node is ‘followed’
• Different connection points
• Difference because of generator types

Synchronous Generator Induction Generator
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Test: use of measurement data 
of own PV-ESAT installation

• The PV power is calculated from 5-s average irradiance 
data measured one year in Leuven (ESAT building)

• Extrapolation: 50 systems of 1 kWp
• Small voltage fluctuations on cloudy day
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Example: dynamic voltage 
stability

• Opening of a branch containing a DG unit (DG units in 
other branches as well
– Voltage dip arises
– limited influence of DG unit on dip depth
– Synchronous generators can restore voltage level
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Test: introduction of wind 
turbine
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Control, or the lack of
• Generators are NOT dispatched in principle

– Weather driven
– Heat demand driven
– Customer has own ideas about use

• Full control necessary ? Loads are also ‘chaotic’
• Higher level of control required to coordinate balancing 

etc. ?
– Need dependable communication (interdependency issue)
– Decide about islanding and reconnection ?

• Different control strategy: voltage source instead of current source
– Through decentralized control: under investigation
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Safety

• Problem: power system is designed for top-down 
power flow

• Now: 
– active power injectors in between the loads

• contribution to the short-circuit current in case of fault
– Fault effects more severe
– Difficult to isolate fault location

– bidirectional power flows
• ‘selectivity’ principle in danger

• New active protection system necessary ?
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Selectivity

net

• Principle
– Protection closest to the fault reacts first
– In case of failure: next one at higher level takes over

• Short-circuit current comes from different 
sides: difficult to cover
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Short-circuit current contribution

net

• Generators in a radial grid contribute to 
the short-circuit current

• Difficult to detect
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Islanding protection

• Special protection against ‘islanding’
– In case of close matching of load with DG: 

system can continue on its own
– Protection guarantees non-energized grid 

after fault, to repair without risk
• Difficult to detect
• No system seems 100% effective
• Doubts about statistical chance
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Adaptation of safety system ?

• Found out where the boundaries of the 
classical protection is

• A new active protection system may be 
required

• Islanding protection: too complicated for a 
a statistically very low chance ?
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Environmental issues
• Power is produced locally, so burden is local

– Noises
– Chemicals (e.g. in fuel cells)
– Emissions are local
– Visual pollution

• Will global emission drop with more RE and 
same reliability level ?
– Traditional power plant are spinning reserve for 

unpredictable RE
• Less efficient mode of operation with increased losses
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Visual pollution
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Availability primary energy sources

• Making power locally often requires 
transport of (more) primary energy, e.g. 
natural gas for CHP
– Transport infrastructure is not allowed to be 

congested
– Problem is shifted from electrical distribution 

grid to gas distribution grid!
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Economic aspects
• Many costs in case of DG use

– investment, operation and maintenance of DG unit
• E.g. increased balancing cost

– In case of large-scale introduction: cost of adapting power 
system control

• How to share this cost among all DG units in an honest manner ?

• Pay-back uncertain in liberalized market
– Support for ‘green and efficient power’

• Installation subsidies
• Portfolio obligation: supplier must deliver a minimum amount of 

‘green power’
– Proven by ‘green certificates’ obtained per MWh, for which a market is 

set up
– Price for reliability enhancement difficult to estimate
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Liberalized Electricity Market
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Economic aspects II

• Who will finance the backbone power system ?
– Should still be there as backup supply, so ancillary 

services are still necessary
– Long-term depreciation, financed through charges 

included in tariffs
– “departing fees” are sometimes charged…

• Build-in PQ mitigation can also be used as a 
source of extra income, e.g. offer Q
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How far can we go?
Questions to be addressed

• Is there a maximum on the proliferation of not centrally 
dispatched generation units in local grids, and if so, what 
parameters determine and influence this limit ?

• Can grouping different technologies together (up to 
foreseeing a hybrid combination with combustion 
engines) mitigate the “unpredictability problem”?

• What types of problems (e.g. voltage dips) can one solve 
by installing storage facilities, and at what cost?

• Are there preferential combinations of embedded 
generation types with storage facilities?

• What are the implications for a safe and stable operation 
of the distribution grid?
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Large-scale wind power
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Wind energy conversion
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Turbine nacelle
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Electrical Requirements for Off-
shore Wind Turbines

• High Energy Yield
• Minimal Power Fluctuations
• Power Quality
• Controllable Behaviour during Grid 

Disturbances
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High Energy Yield

mech p windP C P= ⋅

Cp = ‘wind energy capture efficiency’

- Max. 59%

- Depends on

turbine design

blade pitch angle

turbine

wind

rpm
v
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High Energy Yield II
Turbine
Power

- variable speed

- pitchable blades
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Pitch & stall control
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Minimal Power Fluctuations

Constant  speed Variable speed
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Power Quality

Power quality requirements 
put limits on  

- frequency & voltage oscillations

- flicker, harmonics, transients…

Power quality is dependent on:
Grid characteristics (grid strength and X/R)
-Generator (reactive power) Must be controllable in 

weak grids !
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Controllable Behaviour during 
Grid Disturbances

e.g. voltage dip with 
an asynchronous 
generator results in 
turbine acceleration 
and disconnection of 
the generator
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Wind turbine generators types 

• Induction Generator

• Doubly Fed Induction Generator

• Direct Drive Synchronous Generator
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+  cheap

+  robust

-- Speed not controllable

-- Reactive Power not    
controllable

-- Gearbox requires 
maintenance

e.g. Bonus, NEG-MICON,
Turbowinds ...

Induction generator with gearbox
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Nacelle of asynchronous generator



30

03/18/'04 Distributed Generation - J.Driesen 59

Doubly-fed induction generator

+ Speed and reactive power can 
be independently controlled 
within certain range

+ limited investment cost

- requires maintenance (gearbox, slip rings…)

vb.  Vestas, GE Wind Energy,
Nordex
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Direct-drive synchronous 
generator

+  Speed and reactive power 
independently controllable

+ No gearbox

vb.  Enercon
Lagerwey
Jeumont

-- expensive converter

-- low generator speed requires new 
generator  design with high torque 
density
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Nacelle synchronous generator
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Wind Turbine Generators: 
Trends

• Higher nominal powers (up to 5 MW)
• Variable speed and reactive power control
• Direct drive, permanent magnet rotors
• New generator designs with high power 

density for direct drive applications 
(transversal flux, axial flux, switched 
reluctance…)
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Wind Turbine Manufacturers
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Multi-MW types
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Conclusion on generator types

• Asynchronous generator
– Not suited for large off-shore wind farms in a weak 

network

• Doubly-fed asynchronous generators:
– Good performance in stable grid, against a 

reasonable cost
– Requires maintenance (gear box, brushes)
– Behaviour during grid distortion not well known
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Conclusion on generator types

• Synchronous generators
– Full control of speed and reactive power
– Largest potential for maintaining grid 

stability
– Low maintenance
– Expensive power electronics and generator
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Large off-shore wind projects
• Why off-shore?

– equivalent full production
• On-shore: 1000h
• On coast/near shore: 

2000h
• Off-shore: 3000h

• Not really considered DG
– Large accumulated power
– Connected to transport grid

• Problem: off-shore means 
bad accessibility 
(40%/year reachable)
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installed 
wind power 
2003
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Building off-shore
• Piles: monopile - tripod
• Gravity based (GBS)
• Suction bucket
• Floating (far-offshore)
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Connecting to shore

• Sub-sea cable
• AC-cable:

– has maximum length
– >30 km: consumes too much reactive power 

for internal distributed capacitance
• DC-cable:

– only DC-resistance
– Needs expensive rectifiers and inverters
– No synchronization required
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Main Power Plants in Belgium

Le Val
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Ruien
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Plate-Taille

Coo
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Saint Ghislain
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Conventional fossil fuel plant

Nuclear power plant

Pumped storage plant

Combined Cycle plant
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400-220-150 kV grid in Belgium

400 kV
220 kV
150 kV
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Close-up of coastal area
Herdersbrug

Gent-Ringvaart

Rodenhuize

Ruien

Heimolen
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Exclusion zones: hard and soft

military zones

special protection areas

dredging areas

ramsar areas

shipping lanes

important bird areas

sand and gravel excavation
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Lack of Transmission Capacity

(1)

(2)

(3)

(4)

Sites for 100 MW wind farms

Zeebrugge

Slijkens

Koksijde

Congestion

Existing power plants
(1) Herdersbrug
(2) Gent-Ringvaart
(3) Rodenhuize
(4) Ruien

Planned grid 
reinforcement

Power flow, 150 kV
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Dynamic impact
• Assessing potential dynamic impact of wind 

farm of HV-grid by
– power system simulations
– using a generic farm model

• Goal:
– estimating grid potential to absorb amount of wind 

power
– NOT: estimating accurately the impact of one specific 

wind farm with specific technology
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Model reduction

REACTOR

- - -

TURBINE

0.69-30kV

30-150kV SEA-CABLE

- - -

GRID

PCC

detailed wind farm model
(turbine type, park layout ...)

equivalent model
(active and reactive power source)

simulate impact on grid
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Generic Farm Model

• Active Power Model
– starting from detailed turbine model from literature

• Reactive Power and Trip Model
– important parameter: grid connection requirements
– interaction reactive power control – active power 

control during disturbances is taken into account
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Active Power Model

Strongly non linear !

Starting from detailed turbine model (GE3.6) from literature
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Simulations with detailed 
Active Power Model

• Goal
– derive a frequency characteristic for the vwind –

power transfer function

• Simulations
– with sinusoidally fluctuating wind speed 

superposed on average wind speed
– frequency and average is varied
– Evaluate the sinusoidally fluctuating output power 

in a Bode plot
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Simulations with detailed
Active Power Model
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Amplitude of Fluctuating Output 
Power
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• low average wind speed 
– low frequency wind speed fluctuations are transferred 

to power output to extract maximum power
– high frequency wind speed fluctuations are damped 

by speed variation of turbine
• high average wind speed

– low frequency wind speed fluctuations are annihilated 
by pitch control (power is continuously equal to rated 
power)

– high frequency wind speed fluctuations are damped 
by speed variation of turbine

Fluctuating Output Power 
curves
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Replace detailed Model by 
equivalent Transfer Function

vwind

transfer function for low wind speed

gradual transition 
low wind speed -> 
high wind speed

power curve

additional transfer function
for high wind speed

low-pass 
filter

0

1



43

03/18/'04 Distributed Generation - J.Driesen 85

Model validation
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Aggregation of Turbine Model to 
Farm Model

X X X X X

X X X X X

X X X X X

X X X X X

Vwind

row 1
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... X= turbine

Distance L

m turbines in each row
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Aggregation of Turbine Model to 
Farm Model

time 
 

time 
 

time 
 

Pagg 
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L  
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Impact of change in wind speed 
direction: Yawing

wind speed
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angle 
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power 
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Impact of change in wind speed 
direction: Yawing
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Active Power Operation Modes

• a specific operation mode may be demanded by 
grid operator, or may be chosen for economic 
profit (balancing power services)

• transition between modes: delay (pitch rate)
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Reactive power control
• 2 options for Reactive Power Control

– Fixed power factor (e.g. cos[phi] = 1)
– Dynamic Var control to control voltage at PCC 

• Reactive power in case of disturbances
– Parameterized tripping requirements (voltage and time 

thresholds)
– Reactive power: 2 options

• Dynamic Var Control (grid support)
• No Dynamic Var Control

• Control Speed: dependent on generator or interface 
type
– Doubly Fed: T ~ 0.5 – 2 s
– Synchronous with PWM converter: T ~ 0.2 s
– if HVDC, Statcom... used: T ~ 0.2 s
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Reference: EON grid 
connection requirements

Voltage and reaction time
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Conclusion
• History repeats: after 100 years idea of local 

supply grids is back
• Now:

– grids are now interconnected
– higher PQ level is wanted

• DG cannot be introduced without limits if no 
special measures are taken

• Determining maximum level of penetration is a 
difficult optimization exercise

• Finally, the customer is still the one who has to 
‘want’ it and install it (on his premises)
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Results from study
• Congestion bottleneck in-land

– Need extra lines…
• AC cable is possible but on the edge

– 2*150 kV in parallel
• Reactive power support is required

– SVC on coast
– Q produced at turbine not much influence (due to long 

cable)
• Accessibility of off-shore farm is big problem
• Large legal issues remain



48

03/18/'04 Distributed Generation - J.Driesen 95

How will the customer react ?
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European projects
• FP5 cluster on distributed 

generation: technology 
projects
– http://www.clusterintegratio

n.org/
– http://www.dispower.org

• FP6 (recently started)
– EU-DEEP (http://www.eu-

deep.com): customer 
approach


