A Holistic Microgrid Energy Management System for Improved Energy Efficiency and Renewable Integration

Bobby Sagoo, GE Digital Energy

Microgrid Symposium – Santiago, Chile
September 2013
Approach / Technologies

1. Supervisory Control
2. Holistic Energy Approach
3. Optimal Dispatch
4. Demand Optimization
5. IVVC
6. Communication
Microgrid Control Approach

Supervisory Controls

- Optimal Dispatch to optimize electrical and thermal performance and cost
- Manage feeder connection to bulk grid
- Manage renewable intermittency
- Demand Optimization
- Integrated Volt / VAR Control

Power, Frequency, Voltage, VARs

Supervisory Control

Utility / User Settings

Local Control

DG

Set Points

Grid

measurements

Microgrid Network & Loads
Holistic Energy Viewpoint

Electrical Dispatch with Tri-Gen Optimization - Overall Energy Efficiency > 70%

Total COE ($/kWh) = C&I + O&M + F

http://www.energy.ca.gov/distgen/markets/electricity.html
3.3 Optimal Dispatch

The process of allocating the required load demand between the available resources such that the cost of operation is minimized.

The optimal dispatch algorithm implements *Model Predictive Control* using:

- **Load** forecasts
- Generation forecasts (dispatchable and non-dispatchable)
- and **Stored Energy**

Additional optimization constraints include:

- Unit Commitment, Start/Stop
- Min/max power/thermal output
- Generator Efficiency, Storage Efficiency
- Speed to ramp up/down output
- Electricity–to-thermal ratio in Combined-Heat-Power (CHP) source
- Market price of electricity (if connected to the utility grid) and fuel for DER Assets
Optimal Dispatch

Microgrid Optimization Model

Pre-processing Unit

Post-processing Unit

SETTINGS

System Topology, Fuel Cost, Start-up/Shut-down Costs, Isoch Margin, ...

FORECASTS

Load
Renewables
Electricity Price

Device Status
Storage State of Charge

Setpoints of Dispatchables
Setpoints of Storage Devices

GE Proprietary & Confidential
Demand Optimization

1. Emergency Load Shedding
2. Load as a Resource
 - Building Energy Management
 - Backup Gensets
Emergency Load Shedding

An intelligent scheme that will arm the required amount of load to be shed in order to maintain system stability

- Prioritization of loads & generation
- Dynamic load shedding based on potential generation deficit
- Dynamic generation shedding based on potential generation excess

Shedding may be triggered by a fast message sent over communications or by a local measurement of frequency
BEM: Heating/Cooling Demands

Thermal Load Management & Demand Limit

Chiller Plant
- Managed Load
- % Output Limit
- Demand Load Scheduling
Integrated Volt / VAR Control (IVVC)
MG Distribution Grid Optimization

Status quo
Uncertainty = inherent waste

Possible tomorrow
Grid intelligence = efficiency gains

Optimize Voltage and VAR profiles to minimize distribution losses and manage load

Flatten voltage around a desired setting

Power loss minimization

before after
Communication
Communications & Cyber Security

Proficy CIMPLICITY

Point Management
OPC Client Modbus (Slave) OPC Client OPC Client

Data Storage

Microsoft SQL Server

Analytics (As Needed)

COM

ODBC

FactoryTalk®

Enervista Integrator

Industrial Gateway Server

CMCS (Application Server)

BACnet

CCS PLC

U90+

JCI NAE

SMART PANELS

Modbus (Master)

Rockwell Proprietary

ODBC

BACnet

BACnet

MODBUS (Slave)

OPC Client

ODBC

BACnet
Case Study: 29 Palms Microgrid
Overview

Department of Defense (DoD):

- manages > 577,500 buildings and structures
- worth $712 billion
- located on more than 400 installations in the United States
- spends $3.5 billion per year on facility energy consumption
- is the largest single energy consumer in the Nation
- has policies to:
 - increase energy conservation,
 - reduce energy and water demand, and
 - increase the use of renewable energy
 - reduce emissions
MAGTFTC / MCAGCC

Marine Air Ground Task Force Training Command / Marine Corps Air Ground Combat Center
Objective:
Enhance and demonstrate the advanced microgrid control technologies at a suitable DoD installation to improve energy efficiency and increase energy security

ESTCP Project Purpose:
1. Execute the technology demonstration to validate the technology’s performance and expected operational costs.
 - Data-based scientific proof of the technical claims
 - Collect Cost and environmental performance data to allow realistic estimates for full scale implementation

2. Transfer the technology
 - Work with the intended DoD user community to achieve their acceptance and feedback on the usefulness of the technology

3. Provide data and support to achieve regulatory and end-user acceptance
29 Palms Microgrid
Phase 1: Technical Highlights

Advanced Energy Management for Distribution-based Resources:

Completed all the following new features of microgrid:

- Optimal Dispatch of Distributed Energy Resources (DER) both during grid-connected and islanded conditions – development complete
- Dispatch capability of electrical and thermal assets - completed
- Built-in hooks of future enhancements like new CHP, new PV and energy storage (more things to optimize) - completed
- Interface of GE equipment with Legacy Systems from JCI, Rockwell etc.
- Testing in mixed type of communication media: wireless, Ethernet
- Testing Mixed type of protocols: Modbus, Bacnet, RSLinx
- Mixed mode of operations: Advisory, Automated, Manual and Legacy
Phase II – Integrated Volt/Var Control

The objective functions analyzed for application to military bases are:

- Minimize peak load (through conservation voltage reduction)
- Minimize line power losses
- Minimize number of cap bank operations
- Voltage flattening
Phase III – Battery Energy Storage System

Primary Technical Objectives:

- Increase Power Factor of Co-Generation facility
- Increase overall Solar Power Plant capacity factor, specifically during islanded operation
- Provide peak-shaving during high demand periods and reduce peak demand charges

Secondary Technical Objectives:

- Assess sodium-metal-halide energy storage technology in a grid-tied utility application.
- Develop and exercise algorithm's for
 - Voltage support
 - Frequency regulation
 - Low voltage ride through (LVRT)
 - Uninterruptable Power Supply (UPS) operation.
Questions?
Appendix – Test Results
Baseline case powers (Jul 15 2010)

Baseline Q consumed from the grid 2000 kVar
Baseline case voltages (Jul 15 2010)

Number of min Volt violations: 87
Number of max Volt violations: 0
Baseline case Voltages (Aug 15 2010)

Number of min Volt violations: 1005
Number of max Volt violations: 0
DP results for Jul 15 2010

Peak Q consumed from grid reduced to 500 kVar
Results of DP on Voltages (Jul 15 2010)

Number of min Volt violations: 0
Number of max Volt violations: 0
DP results for Aug 15 2010

Cap banks supplying half of Q during CHP loss
Results of DP on Voltages (Aug 15 2010)

Number of min Volt violations: 162
Number of max Volt violations: 0

GE Proprietary & Confidential